250 research outputs found

    Circulating immune complexes and complement C3 and C4 levels in a selected group of patients with rhinitis in Lebanon

    Get PDF
    BACKGROUND: A number of reports indicate that circulating immune complexes (CIC) and activation of the complement system contribute to the pathogenesis of Type I allergy. The aim of this study was to investigate the status of CIC in 113 patients with rhinitis in Lebanon and determine complement components C3 and C4 serum levels in the CIC-positive patients. Serum specific IgE antibodies were previously detected and reported in 74 of the 113 patients. METHODS: CIC were detected by polyethylene glycol precipitation and serum C3 and C4 levels quantified by radial immunodiffusion. RESULTS: CIC was positive in 20 of the specific IgE-positive and 13 of the specific IgE-negative patients. C3 and C4 levels were within the normal range in all the 33 CIC-positive patients. CONCLUSIONS: The antibody class that constitutes the complexes does not seem to be IgG or IgM. Moreover, complement activation does not seem to be involved in the allergic reaction since both C3 and C4 levels were normal in all patients. The role of these complexes, if any, in the pathogenesis of rhinitis is yet to be determined

    Editorial: biomarkers in neurology

    Get PDF
    Neurological disorders constitute a major health and socioeconomic problem. They represent the second cause of death and the leading cause of disability throughout the world. Despite the implementation of strategies and intervention programs to reduce the burden, over the past 25 years, the incidence, prevalence, mortality, and disability rates of neurological disorders are rising globally, mainly due to population aging and growth (1). This has placed heavy pressure on health-care systems pointing out the urgent need to identify new strategies to improve patient outcomes and reduce health costs by enabling more effective drug development and establishing a more personalized medicine approach. Rapid scientific and technical advances have enabled reliable and affordable measurement of novel biomarkers—biological indicators that objectively measure and evaluate physiological or pathophysiological processes or pharmacological responses to a therapeutic intervention (2)—which have been suggested to help assessment and management of patients with neurological disorders beyond current practice standards (3–5). Evidence suggests a potential variety of clinical applications, including enhancing diagnostic and prognostic accuracy, improving the existing decision criteria for early diagnosis and risk stratification, as well as assisting in disease monitoring, and acting as surrogate endpoints in experimental studies and clinical trials (6–10). In addition, biomarkers may reliably capture the different aspects of disease heterogeneity and pathogenesis, helping characterize patients, and thereby informing targeted tailored treatments and predicting response outcomes to interventions (11–18). However, despite large numbers of candidate biomarkers have been proposed and extensively evaluated, very few are currently integrated into routine clinical practice and the quest for novel brain injury markers in still ongoing (19)

    Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions

    Get PDF
    Axonally specific microtubule-associated protein tau is an important component of neurofibrillary tangles found in AD (Alzheimer's disease) and other tauopathy diseases such as CTE (chronic traumatic encephalopathy). Such tau aggregate is found to be hyperphosphorylated and often proteolytically fragmented. Similarly, tau is degraded following TBI (traumatic brain injury). In the present study, we examined the dual vulnerability of tau to calpain and caspase-3 under neurotoxic and neurodegenerative conditions. We first identified three novel calpain cleavage sites in rat tau (four-repeat isoform) as Ser130↓Lys131, Gly157↓Ala158 and Arg380↓Glu381. Fragment-specific antibodies to target the major calpain-mediated TauBDP-35K (35 kDa tau-breakdown product) and the caspase-mediated TauBDP-45K respectively were developed. In rat cerebrocortical cultures treated with excitotoxin [NMDA (N-methyl-d-aspartate)], tau is significantly degraded into multiple fragments, including a dominant signal of calpain-mediated TauBDP-35K with minimal caspase-mediated TauBDP-45K. Following apoptosis-inducing EDTA treatment, tau was truncated only to TauBDP-48K/45K-exclusively by caspase. Cultures treated with another apoptosis inducer STS (staurosporine), dual fragmentation by calpain (TauBDP-35K) and caspase-3 (TauBDP-45K) was observed. Tau was also fragmented in injured rat cortex following TBI in vivo to BDPs of 45–42 kDa (minor), 35 kDa and 15 kDa, followed by TauBDP-25K. Calpain-mediated TauBDP-35K-specific antibody confirmed robust signals in the injured cortex, while caspase-mediated TauBDP-45K-specific antibody only detected faint signals. Furthermore, intravenous administration of a calpain-specific inhibitor SNJ-1945 strongly suppressed the TauBDP-35K formation. Taken together, these results suggest that tau protein is dually vulnerable to calpain and caspase-3 proteolysis under different neurotoxic and injury conditions

    CSF and Plasma Amyloid-beta Temporal Profiles and Relationships with Neurological Status and Mortality after Severe Traumatic Brain Injury

    Get PDF
    The role of amyloid-β (Aβ) neuropathology and its significant changes in biofluids after traumatic brain injury (TBI) is still debated. We used ultrasensitive digital ELISA approach to assess amyloid-β1-42 (Aβ42) concentrations and time-course in cerebrospinal fluid (CSF) and in plasma of patients with severe TBI and investigated their relationship to injury characteristics, neurological status and clinical outcome. We found decreased CSF Aβ42 levels in TBI patients acutely after injury with lower levels in patients who died 6 months post-injury than in survivors. Conversely, plasma Aβ42 levels were significantly increased in TBI with lower levels in patients who survived. A trend analysis showed that both CSF and plasma Aβ42 levels strongly correlated with mortality. A positive correlation between changes in CSF Aβ42 concentrations and neurological status as assessed by Glasgow Coma Scale (GCS) was identified. Our results suggest that determination of Aβ42 may be valuable to obtain prognostic information in patients with severe TBI as well as in monitoring the response of the brain to injury

    The Brain And Exercise: In Sickness And In Health

    Get PDF
    The brain, like any other organ in the body, is made up of various types of cells. Nerve cells called neurons are the major cells in the brain. Their main function is to transfer messages and orders to and from the organs of the body. Neurons communicate with each other and with other cells through connections that resemble electrical wires. Throughout a person’s life, neurons remodel and rewire their connections to become weaker or stronger. This remodeling is known as brain neuroplasticity, which means “the ability to adapt or change.” Neuroplasticity is affected by several factors. For example, physical activity such as exercise can reshape the brain for the better, by enhancing memory and attention. These changes can improve academic performance and protect people from certain brain diseases. These are just a few reasons why we should all exercise more often

    Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autophagy, an intracellular response to stress, is characterized by double membrane cytosolic vesicles called autophagosomes. Prolonged autophagy is known to result in autophagic (Type II) cell death. This study examined the potential role of an autophagic response in cultured cerebellar granule neurons challenged with excitotoxin N-methyl-D-aspartate (NMDA).</p> <p>Results</p> <p>NMDA exposure induced light chain-3 (LC-3)-immunopositive and monodansylcadaverine (MDC) fluorescent dye-labeled autophagosome formation in both cell bodies and neurites as early as 3 hours post-treatment. Elevated levels of Beclin-1 and the autophagosome-targeting LC3-II were also observed following NMDA exposure. Prolonged exposure of the cultures to NMDA (8-24 h) generated MDC-, LC3-positive autophagosomal bodies, concomitant with the neurodegenerative phase of NMDA challenge. Lysosomal inhibition studies also suggest that NMDA-treatment diverted the autophagosome-associated LC3-II from the normal lysosomal degradation pathway. Autophagy inhibitor 3-methyladenine significantly reduced NMDA-induced LC3-II/LC3-I ratio increase, accumulation of autophagosomes, and suppressed NMDA-mediated neuronal death. ATG7 siRNA studies also showed neuroprotective effects following NMDA treatment.</p> <p>Conclusions</p> <p>Collectively, this study shows that autophagy machinery is robustly induced in cultured neurons subjected to prolonged exposure to excitotoxin, while autophagosome clearance by lysosomal pathway might be impaired. Our data further show that prolonged autophagy contributes to cell death in NMDA-mediated excitotoxicity.</p

    Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects

    Get PDF
    Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma’s current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field

    Blast Brain Injury Elevates Catecholamine Biosynthesis in the Nucleus Tractus Solitaries and Oxidative Stress in the Hypothalamus in Rats

    Get PDF
    Introduction: Traumatic Brain Injury (TBI) produces major health problems impacting the lives of both military and civilian personnel. TBI disrupts autonomic function but the nature of this disruption is unknown. Following blast brain injury, we assessed selective biochemical markers for autonomic function in adult male Sprague Dawley rats. Methods: Rats were subjected to head-directed overpressure blast injury (OBI) of 358 kPa magnitude at the target. At the same time for sham controls, rats were anesthetized as the previous group but instead of OBI were exposed just to noise being placed at ~ 2 m distance from the shock tube nozzle. Sympathetic nervous system activation of nucleus tractus solitaries and in the hypothalamus was evaluated at 6 hours following blast injury by assessing the expression of catecholamine biosynthesizing enzyme, tyrosine hydroxylase (TH) in the nucleus tractus solitaries and NADPH oxidase activity, a marker of oxidative stress,in the hypothalamus. Results: Following OBI there was a significant elevation in TH protein expression by 49% compared with control (P\u3c0.05). In addition, NADPH oxidase activity was significantly increased by 36% following OBI (P\u3c0.05). Conclusions: Collectively, the increased catecholamine biosynthesis in nucleus tractus solitaries and oxidative stress in the hypotalamus suggest that OBI results in increased sympathoexcitation in the rat brain. Such effects may be one important factor contributing to autonomic dysfunction following OBI. Acknowledgements: Supported by Department of Veteran Affairs; Rehabilitation R&D, GRECC, Medical Research Services, Banyan Biomarkers Inc, University of Florida Brain Institute, NIA, and AH

    The use of biofluid markers to evaluate the consequences of sport-related subconcussive head impact exposure : a scoping review

    Get PDF
    This review was supported by the University of Stirling (no grant number applies). L.W. also received support as part of Framework 7 programme of the European Union (CENTER-TBI, Grant number: 602150–2). S.M. received research support from the Italian Ministry of Health (GR-2013–02354960).Background Amidst growing concern about the safety of sport-related repetitive subconcussive head impacts (RSHI), biofluid markers may provide sensitive, informative, and practical assessment of the effects of RSHI exposure. Objective This scoping review aimed to systematically examine the extent, nature, and quality of available evidence from studies investigating the effects of RSHI on biofluid markers, to identify gaps and to formulate guidelines to inform future research. Methods PRISMA extension for Scoping Reviews guidelines were adhered to. The protocol was pre-registered through publication. MEDLINE, Scopus, SPORTDiscus, CINAHL, PsycINFO, Cochrane Library, OpenGrey, and two clinical trial registries were searched (until March 30, 2022) using descriptors for subconcussive head impacts, biomarkers, and contact sports. Included studies were assessed for risk of bias and quality. Results Seventy-nine research publications were included in the review. Forty-nine studies assessed the acute effects, 23 semi-acute and 26 long-term effects of RSHI exposure. The most studied sports were American football, boxing, and soccer, and the most investigated markers were (in descending order): S100 calcium-binding protein beta (S100B), tau, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), phosphorylated tau (p-tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and hormones. High or moderate bias was found in most studies, and marker-specific conclusions were subject to heterogeneous and limited evidence. Although the evidence is weak, some biofluid markers—such as NfL—appeared to show promise. More markedly, S100B was found to be problematic when evaluating the effects of RSHI in sport. Conclusion Considering the limitations of the evidence base revealed by this first review dedicated to systematically scoping the evidence of biofluid marker levels following RSHI exposure, the field is evidently still in its infancy. As a result, any recommendation and application is premature. Although some markers show promise for the assessment of brain health following RSHI exposure, future large standardized and better-controlled studies are needed to determine biofluid markers’ utility.Publisher PDFPeer reviewe

    Advances in Cardiovascular Biomarker Discovery.

    Get PDF
    Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator's expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.This research was funded by Qatar University [Grant QUERG-CMED-2020-3]
    corecore